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Abstract. Collecting anthropometric data is a heavy and time-consuming proce-

dure. The aim of this study was to find a reduced set of anthropometric measure-

ments able to estimate the full-body dimensions of a given individual. The method 

was developed and applied on a database of 122 measurements carried out on 

459 females and 771 males of the French military personnel. Among the 122, 26 

key measurements were chosen. A regression method based on support vector 

machine was used to predict these key measurements in relation to each other. 

The designed “minimal measurement set selecting algorithm” chose 6 main in-

puts to predict the remained 20 measurements with mean correlation of 0.94 and 

0.92, respectively on the training and on the testing data. This result tends to 

prove that the regression method can be used to predict the French military per-

sonnel anthropometrics. 
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1 Introduction 

From the early days of biomechanics to now on, anthropometric databases have been 

collected in armies (US, Australian and France) for product design. However, anthro-

pometric protocols are heavy and time-consuming. They include numerous measure-

ments which involves trained experimenters to be done. Thus, there is a need in simpli-

fication of such protocols to make them usable in a reduced time. Reducing the number 

of needed measurements and identifying the minimal set of measurements to correctly 

estimate unmeasured ones may be of great interest in such cases. 

Thus, regression models have been designed to predict measurements as functions 

of other ones. Most anthropometric regression methods have been based on linear or 

multiple regression models to predict anthropometrics [1], [2], inertial parameters [3], 

[4] or muscle volumes [5] with a limited amount of data. These regressions have found 



an application in biomechanics to scale musculoskeletal (MSK) models. These MSK 

models combined with multi-body dynamic simulation provide useful insights and gen-

eral guidelines to understand normal and pathological human movement. 

With larger database, supervised machine learning can train more efficient algo-

rithms to predict data with sophisticated algorithms such as support vector machine for 

regression (SVMR) [6]. These tools could make rapid anthropometric prediction with 

population-based statistical models [7]. These methods also have a great potential for 

dimension reduction in anthropometrics. 

The aim of this study is to develop support vector machines for regressions to extract 

a minimal set of measurement able to estimate a complete set of measurements for MSK 

scaling. The method was applied to a French military personnel anthropometric data-

base. 

2 Materials and Methods 

2.1 Anthropometric Database 

Table 1.  List of key measurements kept for musculoskeletal scaling. 

N° Name of the measure Unit 

1 Height of Left Anterior Superior iliac spine mm 

2 Height of Right Anterior Superior iliac spine mm 

3 Height of Left Great Trochanter mm 
4 Height of Right Great Trochanter mm 

5 Height of the middle Patella mm 

6 Distance from great trochanter to lateral femoral condyle mm 
7 Height of popliteal fossa mm 

8 Distance from lateral femoral condyle to lateral malleolus mm 

9 Bitrochanteric distance mm 
10 Maximal foot length mm 

11 Height vertex sat on a seat (sitting upright) mm 

12 C7 Height sat on a seat mm 
13 Acromial height sat on a seat mm 

14 Biacromial distance mm 

15 Pelvis width mm 

16 Anteroposterior thorax thickness mm 

17 Distance from elbow epicondyle to 3rd metacarpal head mm 

18 Distance from posterior plan to the tip of the hand mm 
19 Distance from acromion to epicondyle mm 

20 Distance from epicondyle to radial styloid mm 

21 Functional Upper Limb Reachable Height mm 
22 Height mm 

23 C7 Height mm 

24 Acromion Height mm 
25 Manubrium height mm 

26 Mass kg 

 

A scientifically sampled working data set from a French military personnel survey 

contains 1230 subjects, 459 females and 771 males respectively. In the database, the 

following information is stored for each subjects: demographics (eg. Age, sex, ethnic-

ity) and 122 anthropometric measurements. These measurements were done on the 



torso, the upper limb, the lower limb, the head, the hand and the foot. Among the 122 

measurements, 26 were selected as key measurements for their low ratio standard de-

viation over mean (<0.1) and their potential for MSK scaling. Indeed, these measure-

ments are representative of the segments lengths and widths of the subject and may 

therefore be used for scaling. The subset of key measurements is listed Table 1. 

2.2 Evaluation Criterion 

In order to assess the performance of the developed prediction models, the Pearson’s 

correlation coefficient r, the root mean square error (RMSE), the mean absolute error 

(MAE), the normalized RMSE (NRMSE) and the mean absolute percentage error 

(MAPE) were used as evaluation criteria. The criteria were applied to measure how 

close the real values are from the predicted values using the SVM models. They are 

given in equations (1), (2), (3), (4), (5) as: 
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where 𝑦 is the actual measurements, �̂� is the estimated measurements using SVM and 

𝑛 is the total number of measurements. Criteria (2) and (3) indicated errors in the unit 

of the measurements and criteria (4) and (5) indicated relative errors in percentage to 

compare model performances between different magnitudes and units.  

2.3 Minimal Measurement Set Selecting Algorithm using Support Vector 

Machine for Regression 

Support vector machine is a supervised machine learning method used for classification 

and regression of data. The basic idea of SVMR is to find a function able to map input 

data into target data [6]. A linear epsilon-insensitive SVM (ε-SVM) regression has been 



used. Given a training dataset with inputs x and targets y, the ε-SVM regression try to 

find a function f(x) as the L1 loss |y − f(x)| ≤  ε, while being as flat as possible. 

Moreover, a gaussian function was chosen for the kernel of the SVM as we try to 

map statistic repartitions. In the training dataset, one or several measurements can be 

used as the input vector of the SVM to predict another measurement from the same 

dataset. The input must be chosen among the 122 measurement of the dataset. For ex-

ample, we can use the Bitrochanteric distance and the C7 height to predict the Pelvis 

width.   
 

 

Fig. 1. Illustration of the minimal measurement set selecting algorithm. 

The aim of the algorithm was to select a minimal set from the 122 measurement to 

predict the 26 measurements with a specified correlation using 26 SVMRs (Figure 1). 

The 122 measurements were all considered as potential input data for the 26 key meas-

urements. Thus, 122 SVMRs with a Gaussian kernel were trained to predict each key 

measurement (122×26). The correlation r was used as the convergence criterion. The 

measurement, for which the SVMRs had the best correlations between real and pre-

dicted values in mean within the 26 key measurements, was selected as a common fea-

ture for 26 SVMRs.  

While all correlation of the 26 SVMRs remained inferior to a threshold, a new com-

mon feature was added to train the 26 SVMRs. This new feature was selected for its 

high correlation within the remained key measurements below the threshold. The 

threshold was set to 0.8 for the study, considered as a statistically strong correlation 



level for such sample size of normally distributed data [8]. Finally, a 10-fold cross val-

idation was used as a testing data set to estimate the performance of the model on new 

data. 

3 Results 

For this threshold set to 0.8, the algorithm stopped with a minimal correlation of 0.85 

for the SVMR predicting anteroposterior thorax thickness (measurement No 16). Six 

measurements were included in the 26 SVMRs: manubrium height, mass, distance of 

the great trochanter to the lateral femoral condyle, bitrochanteric distance, height of 

acromion sat on a seat. These measurements were included in the key measurements 

set.  

For the 20 remaining predicted measurements, mean correlation r for the training 

data and the testing data were 0.94 ± 0.05, and 0.92 ±0.06. Mean RMSE were respec-

tively 12.47 ± 7.48 mm and 14.71 ± 8.24 mm. Mean MAE were respectively 9.39 ± 5.39 

mm and 10.77 ± 6.74 mm. Mean NRMSE for the training data and the testing data were 

respectively 0.05 ± 0.03 and 0.06 ± 0.03. Mean MAPE for the training data and the 

testing data were respectively 0.02 ± 0.01 and 0.02 ± 0.01. For more details, all results 

are presented in Table 2. 

We observed that the smaller measurements are less well predicted compared to 

larger measurements. For example, RMSE and MAE are same order of magnitude for 

C7 Height and popliteus height (No. 23 and 7) but the correlation r, the NRMSE and 

MAPE are lower. 

4 Discussion 

In this paper, we explored the use of SVM to develop models to predict anthropometric 

quantities from a reduced number of measurements. A 26-measurement subset of the 

database was chosen for their potential use for musculoskeletal scaling. The trained 

SVMRs successfully reduced the needed set of measurements from 26 to 6.  These new 

minimal set of measurements with the SVMRs can predict anthropometrics for various 

applications. This method is interesting for markerless motion capture systems, espe-

cially for inertial measurement units [9] which mainly rely on anthropometrics for the 

scaling of kinematic chains. Also, the measurements provided by the SVM could be 

used as a new way to geometrically scale a musculoskeletal model through optimization 

techniques [10], [11], diminishing the number of actual measures to be done to scale 

the complete model. 



Table 2.  Evaluation criteria for each key measurement with the training and testing data set. 

No Data type R RMSE 
(mm) 

MAE 
(mm) 

NRMSE 
(%) 

MAPE 
(%) 

1 Training 0.96 18.07 14.02 0.05 0.01 

 Testing 0.94 20.65 15.98 0.06 0.02 

2 Training 0.96 17.89 13.84 0.05 0.01 
 Testing 0.94 20.51 15.81 0.06 0.02 

3 Training 0.95 16.97 12.97 0.05 0.01 

 Testing 0.94 19.41 14.72 0.05 0.02 
4 Training 0.95 17.14 13.09 0.05 0.01 

 Testing 0.93 19.95 15.17 0.06 0.02 

5 Training 0.92 13.00 10.06 0.06 0.02 
 Testing 0.89 14.74 11.53 0.07 0.02 

7 Training 0.92 11.75 8.98 0.06 0.02 

 Testing 0.90 13.29 10.35 0.07 0.02 
8 Training 0.91 11.49 8.81 0.07 0.02 

 Testing 0.89 12.90 9.98 0.07 0.02 

10 Training 0.89 8.39 6.44 0.09 0.03 
 Testing 0.85 9.37 7.35 0.10 0.03 

11 Training 0.94 14.55 11.21 0.06 0.01 

 Testing 0.92 16.40 12.67 0.07 0.01 
12 Training 0.90 14.53 10.17 0.06 0.02 

 Testing 0.88 15.99 11.56 0.07 0.02 

15 Training 0.91 12.40 9.28 0.06 0.03 
 Testing 0.88 14.23 10.72 0.07 0.04 

16 Training 0.85 13.12 10.10 0.09 0.04 
 Testing 0.82 14.32 11.17 0.09 0.05 

17 Training 0.88 11.38 8.63 0.08 0.03 

 Testing 0.86 12.58 9.77 0.09 0.03 
18 Training 0.90 25.35 19.77 0.08 0.02 

 Testing 0.87 28.28 22.50 0.09 0.03 

19 Training 0.87 11.64 9.09 0.08 0.03 
 Testing 0.83 12.88 10.23 0.08 0.03 

20 Training 0.86 9.67 7.27 0.09 0.03 

 Testing 0.83 10.57 8.15 0.10 0.03 
21 Training 0.95 36.50 28.06 0.05 0.01 

 Testing 0.94 41.86 31.92 0.06 0.02 

22 Training 0.99 13.05 10.02 0.02 0.01 
 Testing 0.98 17.69 11.89 0.03 0.01 

23 Training 0.99 13.47 10.55 0.03 0.01 

 Testing 0.98 17.39 12.37 0.03 0.01 
24 Training 0.99 13.59 10.20 0.03 0.01 

 Testing 0.98 17.46 11.94 0.03 0.01 

Mean 
(std) 

Training 
0.94 (0.05) 

12.47 
(7.48) 

9.39 
(5.39) 

0.05 
(0.03) 

0.02 
(0.01) 

 Testing 0.92 

(0.06) 

14.71 

(8.24) 

10.77 

(6.74) 

0.06 

(0.03) 

0.02 

(0.01) 

 

The method could also be applied to the prediction of non-palpated landmarks such 

as hip joint centers [12]. Last, such an approach can be useful in product design such as 

exoskeleton design [13], enabling the development of anthropometrics based scaling 

methods to characterize populations of subjects instead of individuals. 

As a perspective, this result should be extended to the time cost and the reliability of 

each measure. Indeed, the intra and inter experimenter variability is a measurement bias 

that can diminish the power of the method. From a methodological perspective, the 



support vector machine method could be compared to other approaches such as multi-

linear regression or artificial neural networks. Finally, this study opens the perspective 

of defining an ideal minimal set of measurements which would be able to predict the 

parameters of a complete musculoskeletal model such as anthropometrics, body seg-

ment inertial parameters and muscles parameters (volumes, pennation angles, maximal 

isometric forces…). 
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